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Abstract---The effect of wall slip on the laminar heat transfer to power-law fluids in pipes with constant 
wall temperature and constant wall heat flux is investigated for the case of a short axial distance. The 
transformed temperature is expanded in a Leveque series in terms of the powers of s- t/2, where s is the 
Laplace transformation variable with respect to the axial distance. For a constant wall temperature, the 
zero-order solution is the Leveque solution, whereas, for a constant wall heat flux, the first-order solution 
is the Leveque solution, Numerical solutions are obtained to show the convergence as well as the effect of 
wall slip on the Nusselt number vs the Graetz number. A significant increase in the Nusselt number is 
shown with an increase in the wall slip velocity. The effect of the Brinkman number is less important for 

high Graetz numbers. 

INTRODUCTION 

The transport processes of polymer solution and 
melts with wall slip phenomena were summarized by 
Mashelkar and Dutta [1]. Ju and Chou [2] analyzed 
the effect of wall slip on the laminar heat transfer of 
power-law fluids in pipes with a constant wall tem- 
perature by the method of eigenfunction expansion. 
Due to the nature of the method, the solutions are 
rapidly convergent for small Graetz numbers (i.e. for 
a distance far from the thermal entrance of the pipes). 
The wall slip was expressed as a ratio of the slip 
velocity to the maximum velocity at the pipe center. 

Sparrow and Lin [3] analyzed the laminar heat 
transfer of rarefied gases in pipes under the wall slip 
condition by assuming that the slip velocity was pro- 
portional to the shear stress at the wall. This 
expression of the wall slip condition was also adapted 
by Sparrow et aL [4] and Singh and Laurence [5]. 
Since, in pipe flow, shear stress is uniform, a constant 
slip velocity is obtained along the pipe. 

Another approach was used by Michaeli [6] in a 
study of the wall slip condition in polymer processing. 
The wall slip condition is based on a force balance at 
the wall between "Lhe pressure force and the friction 
force of a fluid element. The velocity distribution 
varies from the pipe entrance to the exit, where the 
velocity distribution becomes plug flow. At the pipe 
entrance, there is tto wall slip. 

The entrance heat transfer problem using a linear 
velocity profile is known as the Leveque solution [7], 
which is an asymptotic solution for short axial 
distances. An extension of the Leveque solution was 
made by Newman [8] with a transformed coordinate 
perturbation method for mass transfer of Newtonian 

fluids. The concentration distribution of the entrance 
laminar mass transfer with constant wall con- 
centration is expanded into a power series of a trans- 
formed axial distance. The zero-order solution is the 
Leveque solution. The method was extended further 
by Shih and Tsou [9] to power-law fluids with viscous 
dissipation for constant wall temperature as well as 
constant heat flux. The same problem was also studied 
by Richardson [10]. Another analytical technique for 
the same problem was investigated by Gottifredi et al. 
[11], Gottifredi and Flores [12] and Chen and Ju [13]. 
Using a Laplace transformation with respect to the 
axial coordinate of the normalized temperature O, the 
variable sL(®) (where s is the Laplace transformation 
variable) is expanded into a power series of s-~/3 after 
a suitable coordinate transformation. 

In this paper, the effect of wall slip, which is ex- 
pressed as a slip parameter, on the entrance laminar 
heat transfer of power-law fluids in circular pipes is 
investigated. This study is restricted to short axial 
distances with constant wall temperature as well as 
constant wall heat flux. 

GOVERNING EQUATIONS 

The power-law fluid model is described by [7] 

dV[  ( ' /~°- ~ dV 1 
~.z = - m  TR ~ N=-, ,  (l) 

where ZRz is the Z-momentum transferred in the R- 
direction, V(R) is the velocity direction, R is the radial 
coordinate from the center of the pipe, rn is a par- 
ameter and n the flow index. The fully developed lami- 
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NOMENCLATURE 

A parameter defined by equation (9d) 
B parameter defined by equation (9e) 
Br Brinkman number defined by 

equations (12) and (14) 
Gz Graetz number defined by equations 

(36) 
h heat transfer coefficient 
k thermal conductivity of fluid 
L[.] Laplace transformation 
m parameter of power-law fluids defined 

by equation (1) 
n flow index of power-law fluids 
N 1/n 
Nu local Nusselt number defined by 

equations (34) and (37) 
Q volumetric flow rate in the pipe 
q wall heat flux, a constant 
R radial distance from the center of the 

pipe 
Ro radius of the pipe 
r R/Ro 
s Laplace transformation variable 

T(R, Z)  
To 
T,~ 
V(R) 
v~ 
vs 
<v> 
X 

Z 

temperature of the fluid 
inlet fluid temperature, a constant 
wall temperature, a constant 
velocity in the axial direction 
maximum velocity in the pipe 
slip velocity at the wall 
average velocity in the pipe 
transformed radial coordinate defined 
by equation (24) 
axial distance of the thermal entrance 
section 
normalized axial distance defined by 
equation (9b). 

Greek symbols 

®(r, z) 

(r, s) 
• (x, s) 
~,(x) 

Vs/ ( V>, slip parameter 
dimensionless temperature defined 

by equations (11) and (13) 
sL[O] 
transformed temperature 

coefficients of the power series of 
¢P(x, s) defined by equation (28). 

nar velocity distribution of a power-law fluid flowing 
in a circular pipe of radius Ro with slip velocity Vs is 
expressed as 

N+3 [ 
v = v s + ~ ( < v > - K )  1 - \RoJ  J (2) 

where < V> is the average velocity : 

l ('Ro 
( V )  = ~ I 2 7 r R V d R .  (3) 

XRo Jo 

Neglecting the axial conduction and the variations of 
the physical properties with temperature, the energy 
equation of the thermal entrance expressed in the tem- 
perature distribution T ( R , Z )  for laminar flow 
becomes 

pC. V f Z  - ~ R +m \ S R J  

(4) 

where p, Cp and k are, respectively, the density, heat 
capacity and thermal conductivity of the fluid. The 
second term on the right-hand side of equation (4) 
represents the viscous dissipation. 

For  a constant inlet fluid temperature : 

T (R, 0) = To. (5) 

Symmetry at the center of the pipe gives 

OT = 0  Z~>O. (6) 
~ R ~ O  

For a constant wall temperature of Tw, 

T(Ro, Z) = Tw (7) 

whereas, for a constant wall heat flux of q, 

I 
aRIR R = q z />0.  (8) 

= o 

Equations (4)-(8) are normalized by defining 
dimensionless coordinates and parameters : 

R 
r = - -  (9a) 

Ro 

k Z  
z (9b) 

oG < v> R~o 

K /~ _ (%) 
<v> 

N +  3 - 28 
A - N +  1 (9d) 

( N +  3)(1 --/~) 
B - N +  1 (9e) 

The slip parameter/~ is defined as the ratio of the wall 
slip velocity to the mean velocity. It is consistent with 
that given by Sparrow and Lin [4]. The advantage of 
using fl is that the expression of the Graetz number is 
explicitly free of the flow index and slip parameter, and 
is inversely proportional to the dimensionless axial 
distance. The relation between the slip parameter and 
the maximum velocity Vm is 

1 ( V >  2 N + I  Vm 
+ (10) 

/~ V~ N + 3  N + 3  Vs 
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where Vd Vm is used by Ju and Chou [2]. For a con- 
stant wall temperature the dimensionless temperature 
®(r, z) and Brinkman number Br are defined as 

T - T o  
(9 --- r~--~--~o CWT (11) 

Br = m[(N + 3)(( V> - V~)] eN+ ,)/u 
CWT. (12) 

k(Tw- To)R~o iN-' 

For a constant wall heat flux, ®if, z) and Br are 
defined as 

q,~ = k ( T -  To) WHF (13) 
qRo 

m[(N+ 3)(< V > -  Vs)] tN+ I)/N 
Br = WHF. (14) 

qR~o/~ 

Here CWT and WHF denote, respectively, constant 
wall temperature and constant wall heat flux. There- 
fore, equations (4)-(8) become 

~z = r ~ r  r +Br (15) 

with 

®(r, 0) = 0 (16) 

0 o  = 0 .  ( 1 7 )  

0 r = 

For a constant wall temperature 

O(1,z)  = 1 CWT (18) 

whereas, for a constant wall heat flux, 

a,Ogr ~=1 = 1  WHF. (19) 

ANALYSIS 

For a short axial distance, Laplace transformation 
of ®(r, z) with respect to z and multiplication by the 
Laplace transfomtation variable s [11, 12] give 

f: • (r, s) = sL[®l = s exp ( -  sz)®(r, z) dz. (20) 

Note that the Laplace transformation variable s has 
a dimension of the inverse of the normalized axial 
distance z, Using the entrance condition of equation 
(16), taking the Laplace transformation of O(r, z) in 
equation (15) and multiplying by s give an ordinary 
differential equation for ~(r, s) : 

1 d / d ~  u+l 
(A--BrU+')s~b = r drr ~r-~r ) + Brr . (21) 

For a constant wall temperature and constant wall 
heat flux, equations (18) and (19) give, respectively, 

• (1,s) = 1 CWT (22) 

d-~r~l~=l = 1  WHF. (23) 

Since the solutions are valid only at a short axial 
distance, the boundary condition at the pipe center 
[equation (17)] will not be used. Additional boundary 
conditions for the solution of the second-order differ- 
ential equation of equation (21) will be discussed later. 

Define a new coordinate variable x as 

x = (1 - r ) s  1/2. (24) 

In terms of the transformed temperature distribution 
• (x, s) equations (21)-(23) become 

d2~ 1 ddO 
dx 2 s - l J 2 - x  dx + ( A - B r N + I ) ~  

and 

- B r ( s - l - x s ~ / 2 )  (25) 

qb(x, s) = 1, x = 0, CWT (26) 

d~x x=0 = -sJ/2 WHF. (27) 

A coordinate perturbation solution in the power of 
s -j/2 is now assumed by letting 

• (x, s) --- ~0 (x) + s -  '/2 ~ (x) + s -  ~ ~2 (x) 

+s -3 / z~3 (x )+ ' . -  (28) 

This perturbation method is applicable for small s-  ~/2, 
and higher-order terms can be neglected for small z. 
Substitution of equation (28) into equations (25)-(27) 
and comparison of the coefficients of the same power 
ofs  -1/2 yield 

a,~ = ( A -  B)¢Oo 

0'( = (A - B)O,  + B ( N +  1)xO o + ~ 

~ = ( A - - B ) ~  3 q- 

B(N+ 1)Nx 2 
2! ~o + X~'o 

+ B(N+ 1)x~l + ~ ]  - B r  

B(N+ 1)N(N-  1) 
3! x3~° +x2~° 

B(N+ 1)Nx z 
2! 01 +x~]  + B ( N +  1)x~2 

,I ,~ = ( A  - B ) a , ,  - 

+ ~'2 + Br(N+ 1)x 

B(N+ 1)N(N-- 1)(N-- 2) 
4! x4~° 

B(N+ 1)N(N-- 1) x3491 
+ x 3 ~ +  3! 

+ x2~,l B(N + 1)Nx2a# 2 + x~2 
2! 

Br(N+ 1)Nx2 
+ B ( N +  1)xOa + ~  -- 2! - (29) 
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where ' "  means d/dx, for a constant wall temperature 

O 0 ( 0 ) = 1 ;  O i ( 0 ) = 0 ,  i = 1 , 2 , 3 . . .  CWT (30) 

and, for a constant wall heat flux, 

(N)(O) = O; 0 ' ,(0) = - 1  ; 

¢I);(0) = 0, i  = 2,3 . . . .  W H F  (31) 

Another  boundary condition for each equation of  
equations (29) is obtained by a boundary layer 
approximation. Let the temperature outside the ther- 
mal boundary layer equal the entrance temperature, 
i.e. 

O ( ~ , s )  = 0. (32) 

Hence, for both cases 

O ~ ( ~ ) = 0 ,  i = 0 , 1 , 2  . . . .  (33) 

Analytical solutions can be obtained easily for ~0(x) 
and 0 1 ( x ) ,  and may be obtained for ~2(x) with a 
certain effort. However,  a numerical method is used 
to integrate equation (29) with appropriate boundary 
conditions. 

Note  that equation (28) is quite different from the 
case o f  no wall slip, in which expansion is to the power 
of  s -~/3. For  the nonslip case, the variable x equals 
(1 - r )  s 1/3. 

RESULTS OF CONSTANT WALL TEMPERATURE 
CASE 

The local Nusselt number Nu is defined as 

2 R o h  
2 (?01 (34) 

N u -  k -- g'~-I,=' 

for a constant wall temperature, where h is the heat 
transfer coefficient. In terms of  Oi(x) 

2 , ' r2 +q~i (0) x f ~ +  O~ (0)2z'/2 N u  = . ~  [¢I) 0 (O)z / 

(35) 

The Graetz number G z  is defined as 

a z  - p C p Q  _ rc (36) 
k Z  z 

where Q is the volumetric flow rate. 
The zero-order solution O0(x) which can be 

obtained analytically is known as the Leveque solu- 
tion. The convergence o f  the extended Leveque solu- 
tion is illustrated in Fig. 1 for the case of  n = 0.25, 
B r  = 0 and fl = 0.1. For  a large Graetz number,  i.e. 
for a short axial distance, the convergence is fast, as 
expected. For  example, for a Graetz number of  1000, 
four or five terms in the series of  equation (28) are 
enough. However,  less terms are required for a large 
flow index n. Figures 2-5 show that the numerical 
results can be extended to lower Graetz numbers with 
an increase in the flow index. 

Figures 2-5 show the effect of  the slip parameter on 

I0O] 

io 

1100 1000  10000  

GZ 

Fig. 1. Nusselt vs Graetz number for a constant wall tem- 
perature with n = 0.25, Br = 0 and fl = 0.1: 1, 2 . . . .  denote 
extended Leveque solutions with one, two . . . .  terms, respec- 

tively. 
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Fig. 2. Nusselt number vs Graetz number foa constant wall 
temperature with n = 0.25, Br = O. 
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Fig. 3. Nusselt number vs Graetz number for a constant wall 
temperature with n = 0.5, Br  = O. 
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Fig. 4. Nusselt number vs Graetz number for a constant wall 
temperature with n = 1.0, Br  = O. 



Heat transfer to power-law fluids in pipes with wall slip 407 

Nu 

100 

10 

#=1.0 

011 

1! i J i , , , , , t  ~ , , i , , , ,  
0 1000 10000 

Gz 

Fig. 5. Nusselt number vs Graetz number for a constant wall 
temperature with n = 2.0, B r  = O. 
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Fig. 6. Nusselt number vs Graetz number for a constant wall 
temperature with n = 0.5, fl = 0.2 and fl = 0. 

the Nusselt  number  for the cases of  n = 0.25, 0.5, 1 
and 2, respective][y. The Nusselt  number  increases with 
an increase in the slip parameter.  This result is con- 
sistent with the eigenfunction expansion result o f  Ju 
and Chou [2]. The effect o f  the Brinkman number  on 
the Nusselt  number  is minor,  as shown in Fig. 6 for 
large Graetz  numbers.  Equat ions (29) show that O0(x) 
and 4)1(x) are independent  o f  the Brinkman number.  

RESULTS OF' CONSTANT WALL HEAT FLUX 
CASE 

For  a constant wal l  heat flux, the local Nusselt 
number  is expressed as 

N u  - -  ~ -  - 19(1, z) - 2 01 (0) z-1/2 +02(0 )z  

+03(0) 1.333 3/2 ]-1 - - - ~ - z  + ' - -  . (37) 

Note  that  O0(x) = 0. The convergence o f  the local 
Nusselt  number  vs the Graetz  number  is shown in 
Fig. 7. Abou t  seven terms o f  the Leveque series are 
required for a Graetz  number  o f  about  600 and a flow 
index n = 0.25. However,  less terms are required for 
large flow indices as well as for large Graetz numbers.  
In other  words,  extended Leveque solutions can be 
applied to lower Graetz  numbers  with larger flow 
indices as shown in Figs. 8-11. 

100  I 

1° I 

i i i , t , , , i  ~ i i r i i i i  
1000 I0000 

Gz 

Fig. 7. Nusselt vs Graetz number for a constant wall heat 
flux, with n = 0.25, B r  = 0 and fl = 0.1: 1, 2 . . . . .  denote 
extended Leveque solutions with one, two . . . .  terms, respec- 

tively. 
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Fig. 8. Nusselt number vs Graetz number for a constant wall 
heat flux with n = 0.25, B r  = O. 
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Fig. 9. Nusselt number vs Graetz number for a constant wall 
hea t  f lux w i t h  n = 0.5, B r  = O. 
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Fig. 10. Nusselt number vs Oraetz number for a constant 
w a l l  h e a t  f lux  w i t h  n = 1.0, B r  = O. 
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Fig. 11. Nusselt number vs Oraetz number for  a constant 
wall heat flux with n = 2.0, Br = O. 
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Fig. 12. Nusselt number vs Graetz number for a constant 
wall heat flux with n = 0.5,/~ = 0.2 and/~ = 0. 

The effect of  the slip pa ramete r  on  the local Nussel t  
n u m b e r  is shown in Figs. 8-11. The  Nussel t  n u m b e r  
increases with an  increase in the slip pa ramete r  and  
the Grae tz  number .  Figure 12 illustrates the viscous 
dissipat ion effect on  the Nussel t  number .  The wall slip 
case has a higher Nusselt  n u m b e r  as also shown in 
Fig. 6. 

DISCUSSION AND CONCLUSION 

A n  extended Leveque me thod  has  been applied to 
obta in  approximate  solut ions of  the Grae tz  problem 

for a shor t  axial distance for power-law non-New-  
tonian  fluids with  a wall slip condi t ion  for the cons tan t  
wall heat  t empera ture  and  cons tan t  wall heat  flux 
cases. The series expansion is quite different f rom tha t  
of  the no  wall slip case. The Nussel t  n u m b e r  increases 
with an  increase in the slip pa ramete r  and  the Grae tz  
number .  The wall slip causes an  increase in the Nussel t  
n u m b e r  compared  to the no  wall slip case. 
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